Home > News > Industry News >

Complete Analysis on What Are Rolling Element Bearings

Complete Analysis on What Are Rolling Element Bearings

Issue Time:2018-06-12

Complete Analysis on What Are Rolling Element Bearings

Rolling-element bearings, also known as a rolling bearing, is a bearing which carries a load by placing rolling elements (such as balls or rollers) between two bearing rings(races). The relative motion of the races causes the rolling elements to roll with very little rolling resistance and with little sliding.

Rolling-element bearings have the advantage of a good trade-off between cost, size, weight, carrying capacity, durability, accuracy, friction, and so on. Other bearing designs are often better on one specific attribute, but worse in most other attributes. Although fluid bearings can sometimes simultaneously outperform on carrying capacity, durability, accuracy, friction, rotation rate, and sometimes cost. Only people use plain bearings as widely as rolling-element bearings.

Ball-bearing in rolling element bearings

ball bearing

A particularly common kind of rolling-element bearing is the ball bearing. The bearing has inner and outer races between which balls roll. Each race features a groove usually shaped so the ball fits slightly loose. Thus, in principle, the ball contacts each race across a very narrow area. However, a load on an infinitely small point would cause infinitely high contact pressure.

In practice, the ball deforms(flattens) slightly where it contacts each race much as a tire flattens where it contacts the road. The race also yields slightly where each ball presses against it. Thus, the contact between ball and race is of finite size and has finite pressure. Note also that the deformed ball and race do not roll entirely smoothly because different parts of the ball are moving at different speeds as it rolls. Thus, there are opposing forces and sliding motions at each ball/race contact. Overall, these cause bearing drag.

Rolling Element Bearing - Roller bearings 

cykindrical roller beaing

Roller bearings are the earliest known type of rolling-element-bearing, dating back to at least 40 BC. Common roller bearings use cylinders of slightly greater length than diameter. Roller bearings typically have higher radial load capacity than ball bearings, but a lower capacity and higher friction under axial loads. If the inner and outer races are misaligned, the bearing capacity often drops quickly compared to either a ball bearing or a spherical roller bearing.

As in all radial bearings, the outer load is continuously re-distributed among the rollers. Often, only less than half of the total number of rollers carries a significant portion of the load at all time. The animation on the right shows how a static radial load is supported by the bearing rollers as the inner ring rotates.

Spherical roller

spherical roller bearing

Spherical roller bearings have an outer ring with an internal spherical shape. The rollers are thicker in the middle and thinner at the ends. Spherical roller bearings can thus accommodate both static and dynamic misalignment. However, spherical rollers are difficult to produce and thus expensive. And the bearings have higher friction than an ideal cylindrical or tapered roller bearing since there will be a certain amount of sliding between rolling elements and rings.

Gear bearing

gear bearing

Gear bearing is roller bearing combining to epicyclical gear. Each element has a representation is the concentric alternation of rollers and gearwheels with equality of roller diameter to gearwheel pitch diameter. The widths of conjugated rollers and gearwheels in pairs are the same. The engagement is herringbone or with the skew, end faces to realize efficient rolling axial contact. The downside to this bearing is manufacturing complexity. Use gear bearings, for example, as efficient rotary suspension, kinematically simplified planetary gear mechanism in measuring instruments, and watches.

Tapered roller

tapered roller bearing

Tapered roller bearings use conical rollers that run on conical races. Most roller bearings only take radial or axial loads, but tapered roller bearings support both radial and axial loads. And it generally can carry higher loads than ball bearings due to greater contact area. Use tapered roller bearings, for example, as the wheel bearings of most wheeled land vehicles. The downsides to this bearing are that due to manufacturing complexities. Tapered roller bearings are usually more expensive than ball bearings. And additionally, under heavy loads, the tapered roller is like a wedge, and bearing loads tend to try to eject the roller. The forces from the collar which keeps the roller in the bearing add to bearing friction compared to ball bearings.

Needle roller

needle bearing

Needle roller bearings use very long and thin cylinders. Often the ends of the rollers taper to points, people use them to keep the rollers captive. Or they may be hemispherical and not captive but the shaft holds itself or a similar arrangement. Since the rollers are thin, the outside diameter of the bearing is only slightly larger than the hole in the middle. However, the small-diameter rollers must bend sharply where they contact the races, and thus the bearing fatigues relatively quickly.